Contribution to International Economy

  • Структура и особенности функционирования скелетных мышц

 

План

 

Bведение……………………………………………………………………...3

1. Общая характеристика мышц……………………………………….……4

2. Классификация скелетных мышечных волокон……………………..….5

3. Функции и свойства скелетных мышц……………………………….….7

4. Структурная организация мышечного волокна………….….…………..8

5. Работа и мощность мышцы……………………………….………….…...9

           Bывод…………………………………………………………………….…14

Список литературы………………………………………………….15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bведение

Изучение мышц человека является актуальной задачей во многих областях науки. Исследование строения, работы мышц важно для изучения функции живого организма, связи органов между собой, регу­ляции и приспособления к внешней среде, индивидуального развития человека. Мышцы являются активным звеном двигательного аппарата человекa [3]. Именно мышцы позволяют осуществлять полное многообразие движений между разными звеньями скелета, перемещение человека, фиксирование отдельных частей тела в разнообразных положениях. Мышцы также активируют человеческую речь, дыхательную функцию, процессы глотания и жевания. Помимо этого, мышцы оказывают влияние на расположение внутренних органов, содействуют нормальному движению крови в организме, принимают активное участие в обмене веществ. Тело человека насчитывает около 600 разных мышц.

 


 1. Общая характеристика мышц

 

Перемещение тела в пространстве, поддержание определенной позы, работа сердца и сосудов и пищеварительного тракта у человека и позвоночных животных осуществляются мышцами двух основных типов: поперечнополосатыми (скелетной, сердечной) и гладкими, которые отличаются друг от друга клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего [5].

 

 

Рис. 1. Виды мышечной ткани

(ссылка http://saitistika.nedug.ru/common/data/pub/  images/articles/8932/2300.jpg)

 

Мышцы, выполняя свою работу, одновременно совершенствуют функции практически всех внутренних органов, в первую очередь это касается сердечно-сосудистой и дыхательной систем. Мышца является активным элементом аппарата движения.

 

2. Классификация скелетных мышечных волокон

 

Скелетная мускулатура человека и позвоночных животных со­стоит из мышечных волокон нескольких типов, отличающихся друг от друга структурно-функциональными характеристиками [1]. В настоящее время выделяют четыре основных типа мышечных волокон.

 Медленные фазические волокна окислительного типа. Волокна этого типа характеризуются большим содержанием белка миоглобина, который способен связывать О2 (близок по своим свойствам к гемоглобину). Мышцы, которые преимущественно состоят из во­локон этого типа, за их темно-красный цвет называют красными. Они выполняют очень важную функцию поддержания позы человека и животных. Предельное утомление у волокон данного типа и, следовательно, мышц наступает очень медленно, что обусловлено наличием миоглобина и большого числа митохондрий. Восстанов­ление функции после утомления происходит быстро. Нейромоторные единицы этих мышц состоят из большого числа мышечных волокон.

 Быстрые фазические волокна окислительного типа. Мышцы, которые преимущественно состоят из волокон этого типа, выполняют быстрые сокращения без заметного утомления, что объясняется боль­шим количеством митохондрий в этих волокнах и способностью образовывать АТФ путем окислительного фосфорилирования. Как правило, число волокон, входящих в состав нейромоторной единицы, в этих мышцax меньше, чем в предыдущей группе. Основное на­значение мышечных волокон данного типа заключается в выпол­нении быстрых, энергичных движении.

 Быстрые фазические волокна с гликолитическим типом окис­ления. Волокна данного типа характеризуются тем, что АТФ в них образуется за счет гликолиза. Волокна этой группы содержат ми­тохондрий меньше, чем волокна предыдущей группы. Мышцы, со­держащие эти волокна, развивают быстрое и сильное сокращение, но сравнительно быстро утомляются. Миоглобин в данной группе мышечных волокон отсутствует, вследствие чего мышцы, состоящие из волокон этого типа, называют белыми.

 Для мышечных волокон всех перечисленных групп характерно наличие одной, в крайнем случае нескольких концевых пластинок, образованных одним двигательным аксоном.

 Тонические волокна. В отличие от предыдущих мышечных волокон в тонических волокнах двигательный аксон образует множество синаптических контактов с мембраной мышечного волокна. Развитие сокращения происходит медленно, что обусловлено низкой активностью миозиновой АТФазы. Также медленно происходит и расслабление. Мышечные волокна данного типа эффективно работают в изометрическом режиме. Эти мышечные волокна не генерируют потенциал действия и не подчиняются закону «все или ничего». Одиночный пресинаптический импульс вызывает незначительное сокращение. Серия импуль­сов вызовет суммацию постсинаптического потенциала и плавно возрастающую деполяризацию мышечного волокна. У человека мышеч­ные волокна этого типа входят в состав наружных мышц глаза.

 Мышечные волокна не являются функциональной единицей ске­летной мускулатуры. Эту роль выполняет нейромоторная, или двигательная, единица, которая включает мотонейрон и группу мышечных волокон, иннервируемых разветвлениями аксона этого мотонейрона, расположенного в ЦНС. Число мышечных волокон, входящих в состав двигательной единицы, различно и зависит от функции, которую выполняет мышца в целом. В мышцах, обеспечивающих наиболее точные и быстрые движения, двигательная единица состоит из нескольких мышечных воло­кон, в то время как в мышцах, участвующих в поддержании позы, двигательные единицы включают несколько сотен и даже тысяч мышечных волокон.

 

3. Функции и свойства скелетных мышц

 

Скелетная мускулатура является составной частью опорно-дви­гательного аппарата человека [2]. При этом мышцы выполняют следу­ющие функции:

 1)     обеспечивают определенную позу тела человека;

 2)     перемещают тело в пространстве;

 3)     перемещают отдельные части тела относительно друг друга;

 4)     являются источником тепла, выполняя терморегуляционную функцию.

 Скелетная мышца обладает следующими важнейшими свойствами [3]:

 1)     возбудимостью — способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях  аксонов  мотонейронов.  В  лабораторных  условиях  часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т. е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбуди­мость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты — вещества, блоки­рующие передачу нервного импульса через нервно-мышечный си­напс;

 2)     проводимостью — способностью проводить потенциал дейст­вия вдоль и в глубь мышечного волокна по Т-системе;

 3)     сократимостью — способностью укорачиваться или разви­вать напряжение при возбуждении;

 4)  эластичностью — способностью развивать напряжение при растягивании.

 

4. Структурная организация мышечного волокна

 

Скелетная мышца представляет собой сложную систему, преоб­разующую химическую энергию в механическую работу и тепло. В настоящее время хорошо исследованы молекулярные механизмы этого преобразования.

 Мышечное во­локно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат — миофибриллы [1]. Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматическая сеть (ретикулум) и система поперечных тру­бочек — Т-система. Функциональной единицей сократительного аппарата мышечной клетки является саркомер, из саркомеров состоит миофибрилла.

 

Рис. 2. Структура миофибриллы (ссылка http://triglav.my1.ru/Struna-A.jpg)

 

Саркомеры отделяются друг от друга Z-пластинками. Саркомеры в миофибрилле расположены по­следовательно, поэтому сокращение саркомеров вызывает сокраще­ние миофибриллы и общее укорочение мышечного волокна

 

 5. Работа и мощность мышцы

 

Поскольку основной задачей скелетной мускулатуры является совершение мышечной работы, в экспериментальной и клинической физиологии оценивают величину работы, которую совершает мыш­ца, и мощность, развиваемую ею при работе. Согласно законам физики, работа есть энергия, затрачиваемая на перемещение тела с определенной силой на определенное рас­стояние: А = FS. Если сокращение мышцы совершается без нагрузки (в изотоническом режиме), то механическая работа равна нулю. Если при максимальной нагрузке не происходит укорочения мышцы (изометрический режим), то работа также равна нулю. В этом случае химическая энергия полностью переходит в тепловую.  Согласно закону средних нагрузок, мышца может совершать максимальную работу при нагрузках средней величины.

 При сокращении скелетной мускулатуры в естественных условиях преимущественно в режиме изометрического сокращения, например при фиксированной позе, говорят о статической работе, при со­вершении движений — о динамической. Сила сокращения и работа, совершаемая мышцей в единицу вре­мени (мощность), не остаются постоянными при статической и дина­мической работе. В результате продолжительной деятельности рабо­тоспособность скелетной мускулатуры понижается. Это явление назы­вается утомлением. При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления.

 Статический режим работы более утомителен, чем динамический. Утомление изолированной скелетной мышцы обусловлено прежде всего тем, что в процессе совершения работы в мышечных волокнах накапливаются продукты процессов окисления — молочная и пировиноградная кислоты, которые снижают возможность генерирования ПД. Кроме того, нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для энергообеспечения мышечного сокращения. В естественных условиях мышечное утомление при статической рабо­те в основном определяется неадекватным регионарным кровотоком.

Работоспособность скелетной мускулатуры и скорость развития утомления зависят от уровня умственной деятельности: высокий уро­вень умственного напряжения уменьшает мышечную выносливость.

Скелетная мышца образована поперечнополосатыми мышечными волокнами. Их поперечная исчерченность обусловлена наличием чередующихся двоякопреломляющих проходящий свет дисков - анизотропных, более темных, и однопреломляющих свет - изотропных, более светлых. Каждое мышечное волокно состоит из недифференцированной цитоплазмы, или саркоплазмы, с многочисленными ядрами, которая содержит множество дифференцированных поперечно-полосатых миофибрилл.

Периферия мышечного волокна окружена прозрачной оболочкой, или сарколеммой, содержащей фибриллы коллагеновой природы. Небольшие группы мышечных волокон окружены соединительнотканной оболочкой - эндомизием, более крупные комплексы представлены пучками мышечных волокон, которые заключены в рыхлую соединительную ткань - внутренний перимизий, вся мышца в целом окружена наружным перимизием.

Все соединительнотканные структуры мышцы, от сарколеммы до наружного перимизия, являются продолжением друг друга и непрерывно связаны между собой. Всю мышцу одевает соединительнотканный футляр - фасция. У большинства мышц различают брюшко и два конца, из которых один является началом мышцы и получает название головки, а другой, противоположный конец, называется хвостом мышцы. У концов мышцы соединительная ткань образует соединительнотканное сухожилие, которым мышца прикрепляется к кости. Сухожилия образованы пучками коллагеновых волокон, которые вытянуты вдоль и располагаются параллельно друг другу.

Отдельные пучки различного порядка окружены соединительнотканной оболочкой - эндотендинием, переходящей непосредственно в наружную оболочку, окружающую все сухожилие в целом, - перитендиний. Плоское сухожилие получает название сухожильного растяжения, или апоневроза.

По направлению мышечных пучков и их отношению к сухожилиям различают три основных типа мышц:

а) параллельный тип - мышечные пучки располагаются параллельно длинной оси мышцы (например, портняжная мышца,

б) перистый тип - параллельно идущие мышечные пучки располагаются под углом к длиннику мышцы.

Различают мышцы одноперистые, мышечные пучки которых прикреплены по одну сторону сухожилия (например, длинный сгибатель большого пальца кисти); двуперистые мышцы, где мышечные пучки прикрепляются по обеим сторонам сухожилия (например, длинный сгибатель большого пальца стопы); многоперистые мышцы, в которых мышечные пучки в виде многих перистых групп примыкают друг к другу (например, дельтовидная мышца); в) треугольный тип мышц - мышечные пучки с различных направлений сходятся к одному общему концевому сухожилию (например, височная мышца).

Некоторые мышцы имеют две или несколько головок. Мышца, имеющая две головки, получила название двуглавой, три головки - трехглавой, четыре головки - четырехглавой. Встречаются мышцы, имеющие два брюшка, разделенных промежуточным сухожилием. Такие мышцы получают название двубрюшных. Некоторые мышцы имеют на своем протяжении несколько сухожильных перемычек. К вспомогательным аппаратам мышц, способствующим их работе, относят фасции, синовиальные и фиброзные влагалища сухожилий, синовиальные сумки и сесамовидные кости.

Мышцы являются мощной биохимической лабораторией. Они содержат особое дыхательное вещество – миоглобин (сходный с гемоглобином крови), соединение которого с кислородом (оксимиоглобин) обеспечивает тканевое дыхание при экстраординарной работе организма, например при внезапной нагрузке, когда сердечно-сосудистая система еще не перестроилась и не обеспечивает доставку необходимого кислорода. Большое значение миоглобина заключается в том, что, являясь первейшим кислородным резервом, он способствует нормальному протеканию окислительных процессов при кратковременных нарушениях кровообращения и статической работе. Количество миоглобина достаточно велико и достигает 25% от общего содержания гемоглобина. Происходящие в мышцах разнообразные биохимические процессы в конечном итоге отражаются на функции всех органов и систем. Так, в мышцах происходит активное накопление аденозинтрифосфорной кислоты (АТФ), которая служит аккумулятором энергии в организме, причем процесс накопления ее находится в прямой зависимости от деятельности мышц.

 


Bывод

 

Мышечное волокно характеризуется следующими основными физиологическими свойствам: возбудимостью, сократимостью и растяжимостью. Эти свойства в различном сочетании обеспечивают нервно-мышечные особенности организма и наделяют человека физическими качествами, которые в повседневной жизни и спорте называют силой, быстротой, выносливостью и т. д. Они отлично развиваются под воздействием физических упражнений. Мышечная система функционирует не изолированно. Скелетные мышцы содержат особое дыхательное вещество – миоглобин, соединение которого с кислородом, обеспечивает тканевое дыхание при экстраординарной работе организма. Все мышечные группы прикрепляются к костному аппарату скелета посредством сухожилий и связок.


Список литературы

 

Городничев Р.М., Тхоревский В.И. Физиология нервно-мышечного аппарата: Учебное пособие. – Великие Луки: В.Л.ГАФК, 1993. – 41 с.

Коробков А.В. Чеснокова С.А. Атлас по нормальной физиологии.- М.: Медицина, 1986.- С. 253-261.

Начала физиологии: Учебник для вузов / Под редакцией акад. А.Д. Ноздрачева. – СПб.: Издательство «Лань», 2001. – 1088 с.

Основы физиологии человека / Под ред.Б.И.Ткаченко.- Санкт Петербург: Международный фонд истории науки, 1994.- Т.2.- С. 12-54.

Практикум по нормальной физиологии / Под ред. Н.А.Агаджаняна и А.В.Коробкова.- М.: Высшая школа, 1983.- С.217.

Румянцева М.Ф., Лосев Т.Н., Бунина Т.П. Руководство к практическим занятиям по физиологии с основами анатомии человека. – М.: Медицина, 1986. – 272 с.

Физиология человека / Под ред. Г.И.Косицкого. - М.: Медицина, 1985. - С.112-155, 466-468, 472-474.

Физиология человека / Под ред. В.М. Покровского, Г.Ф. Коротько.- М.: Медицина, 1997.- Т.1.-С. 134-189.



Другие работы по теме: